Skip to content

Monge-Elkan similarity, generalized

simGME(x,y)=(1xi=1x(maxj=1,y(sim(xi,yj)))m)1msim_{GME}(x, y) = \left(\frac{1}{|x|} \sum_{i=1}^{|x|} (\max_{j=1,|y|}(sim(x_i, y_j)))^m\right)^{\frac{1}{m}}

Where simsim can be any other similarity measure.

Extension of Monge-Elkan similarity.

Reading

Generalized mean (Hölder mean)

x(a)=(1ni=1naim)1/mx(a) = \left( \frac{1}{n} \sum_{i=1}^{n} a_i^m \right)^{1/m}
  • m=1m = 1 arithmetic mean
  • m=2m = 2 quadratic mean
  • m0m \rightarrow 0 geometric mean
  • m1m \rightarrow -1 harmonic mean
  • mm \rightarrow \infty maximum
  • mm \rightarrow -\infty minimum